
ARTICLE IN PRESS
1077-2014/$ - se

doi:10.1016/j.rt

�Correspond

E-mail addr

URL: http:/
Real-Time Imaging 11 (2005) 378–388

www.elsevier.com/locate/rti
Modified SPIHT algorithm for wavelet packet image coding

Nikola Sprljana,�, Sonja Grgicb, Mislav Grgicb

aMultimedia and Vision Lab, Department of Electronic Engineering, Queen Mary, University of London, London E1 4NS, UK
bFaculty of Electrical Engineering and Computing, University of Zagreb, Unska 3/XII, HR-10000 Zagreb, Croatia

Available online 10 August 2005
Abstract

This paper introduces a new implementation of wavelet packet decomposition which is combined with SPIHT (Set Partitioning in

Hierarchical Trees) compression scheme. We provide the analysis of the problems arising from the application of zerotree

quantisation based algorithms (such as SPIHT) to wavelet packet transform coefficients. We established the generalized

parent–child relationships for wavelet packets, providing complete tree structures for SPIHT. The proposed algorithm can be used

for both wavelet dyadic and Wavelet Packet decomposition (WP-SPIHT). An extensive evaluation of the algorithm was performed

and it has been shown that WP-SPIHT significantly outperforms base-line SPIHT coder for texture images. For these images the

suboptimal WP cost-function enables good enough energy compaction that is efficiently exploited by the WP-SPIHT.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete Wavelet Transform (DWT) provides a
multiresolution image representation and has become
one of the most important tools in image analysis and
coding over the last two decades. Image compression
algorithms based on DWT [1–8] provide high coding
efficiency for natural (smooth) images. As dyadic DWT
does not adapt to the various space-frequency properties
of images, the energy compaction it achieves is generally
not optimal. However, the performance can be im-
proved by selecting the transform basis adaptively to the
image. Wavelet Packets (WP) represent a generalization
of wavelet decomposition scheme. WP image decom-
position adaptively selects a transform basis that will be
best suited to the particular image. To achieve that, the
criterion for best basis selection is needed.

Coifman and Wickerhauser proposed entropy based
algorithm for best basis selection [9]. In their work, the
best basis is a basis that describes the particular image
with the smallest number of basis functions. It is a one-
e front matter r 2005 Elsevier Ltd. All rights reserved.
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sided metric, which is therefore not optimal in a joint
rate-distortion sense. A more practical metric considers
the number of bits (rate) needed to approximate an
image with a given error (distortion) [10] but this
approach and its variation presented in [11] can be
computationally too intensive. In [12] a fast numerical
implementation of the best wavelet packet algorithm is
provided. Coding results show that fast wavelet packet
coder can significantly outperform a sophisticated
wavelet coder constrained to using only a dyadic
decomposition, with a negligible increase in computa-
tional load.

The goal of this paper is to demonstrate advantages
and disadvantages of using WP decomposition in
SPIHT-based codec. SPIHT algorithm was introduced
by Said and Pearlman [13], and is improved and
extended version of Embedded Zerotree Wavelet
(EZW) coding algorithm introduced by Shapiro [14].
Both algorithms work with tree structure, called Spatial
Orientation Tree (SOT), that defines the spatial relation-
ships among wavelet coefficients in different decom-
position subbands. In this way, an efficient prediction of
significance of coefficients based on significance of their
‘‘parent’’ coefficients is enabled. The main contribution
of Shapiro’s work is zerotree quantization of wavelet
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coefficients and introduction of special zerotree symbol
indicating that all coefficients in a SOT are found to be
insignificant with respect to a particular quantization
threshold. An embedded zerotree quantizer refines each
input coefficient sequentially using a bitplane coding
scheme, and it stops when the size of the encoded
bitstream reaches the target bit-rate. SPIHT coder
provides gain in PSNR over EZW due to introduction
of a special symbol that indicates significance of child
nodes of a significant parent and separation of child
nodes (direct descendants) from second-generation
descendants. To date, there have been numerous
variants and extensions to SPIHT algorithm, for
example: 3-D SPIHT for video coding [15–19], SPIHT
for color image coding [20,21], and scalable SPIHT for
network applications [22–25].

Since the SPIHT algorithm relies on Spatial Orienta-
tion Trees (SOT) defined on dyadic subband structure,
there are a few problems that arise from their adaptation
to WP decomposition. First is the so-called parental

conflict [26], that happens when in the wavelet packet
tree one or more of the child nodes are at the coarser
scale than the parent node. It must be resolved in order
that SOT structure with well-defined parent–child
relationships for an arbitrary wavelet decomposition
can be created. Xiong et al. [11] avoided the parental
conflict by restricting the choice of the basis. In their
work the Space-Frequency Quantization (SFQ) algo-
rithm is used. SFQ algorithm employs a rate-distortion
(R-D) optimization framework for selecting the best
basis and to assign an optimal quantiser to each of the
wavelet packet subbands. Rajpoot et al. [26] defined a
set of rules to construct the zerotree structure for a given
wavelet packet geometry and offered a general structure
for an arbitrary WP decomposition. In their work a
Compatible Zerotree Quantisation (CZQ) is utilized,
and it does not impose restriction on the selection of WP
basis. A comparison of PSNR obtained with CZQ-WP
and SPIHT shows that SPIHT provides gain in PSNR
over CZQ-WP for the standard test images, while CZQ-
WP offers better visual quality than SPIHT [26]. This
observation motivated us to use SPIHT with WP in
order to exploit strengths of both methods. This
extension of SPIHT we call Wavelet Packet SPIHT
(WP-SPIHT).

This paper is organized as follows: In Section 2
wavelet analysis in the context of WP-SPIHT is
described. In Section 3 we explain WP-SPIHT algo-
rithm. Coding results are presented in Section 4,
followed by conclusion in Section 5.
Fig. 1. Pyramidal structure of 3-level wavelet decomposition.
2. Wavelet analysis

Wavelet analysis of an image can be viewed in the
frequency domain as partitioning into a set of subbands,
where each partitioning step is obtained by applying the
2D wavelet transform. One level of 2D wavelet trans-
form results in four sets of data (wavelet coefficients),
that correspond to four 2D frequency subbands. For
these four subbands, if the original image data is on the
zero decomposition level (scale), we use the following
notation on kth decomposition level: HHk (high–high or
diagonal details), HLk (high–low or horizontal details),
LHk (low–high or vertical details), LLk (low–low or
approximation). LLk subband is also called image
approximation as it represents image on a lower scale,
while to other subbands we refer as to image details.
Wavelet decomposition is dyadic in a case when only the
LLk subband is further transformed. It results in a new
set of subbands: HHkþ1, HLkþ1, LHkþ1, LLkþ1. Dyadic
decomposition used in image compression will thus
generate hierarchical pyramidal structure, as shown in
Fig. 1. If the dyadic decomposition of N levels is
performed (N times transforming the low–low subband)
the result will be 3N þ 1 subbands. The WP decom-
position is a generalization of wavelet dyadic decom-
position, where further wavelet transform on detail
subbands is possible, potentially producing up to 4N

final subbands. A single wavelet packet decomposition
thus provides a multitude of choices from which the best
representation with respect to a design objective (e.g.
compression efficiency) can be found.

In order to achieve compression gain while keeping
the computational load reasonably low, two entities are
needed: a criterion (cost function) for basis comparison
and a fast search algorithm, which finds the best basis
from the set of all possible bases. The best basis can be
selected using either entropy based cost, as proposed in
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[9], or by jointly estimating the rate-distortion function,
as in [10], but whichever method is selected it does not
explicitly define the parent–child relationships in pro-
duced wavelet subbands. The overall complexity of the
approach in [10] is extremely high, because the selection
of best basis involves three embedded nonlinear
optimization problems. In [9] several cost functions
based on entropy criterion where defined (Shannon,
Logarithm of Energy, l-Norm and Threshold), but
Shannon entropy was found as most attractive. There-
fore, in this work we use Shannon entropy of wavelet
coefficients as cost function for WP bases comparison.
The cost is expressed in terms of bits and it provides fast
and fairly accurate estimation of the actual output bits
that will be spent in coding of the coefficients. In order
to find the best basis we apply adaptive search using
single spatial tree algorithm, [10,27]. There are two
possible approaches for finding the best tree [27]: fully
grown tree and ‘‘greedy’’ grown tree. To compare
complexity of each one the following notation is
introduced here: L � L is the size of a square image, N

is the maximum allowed depth of the decomposition, a0

is the constant specifying per-pixel complexity of DWT
for a wavelet filter of a specific length, and a1 is the
constant specifying per-pixel complexity of the compu-
tation of the specific cost measure. With this notation
the complexity of the dyadic wavelet transform f D is

f D ¼
XN�1

k¼0

a0ð2
�kLÞ2 ¼ a0

4N�1 � 1

3 � 4N�2
L2pa0

4

3
L2. (1)

Since the decomposition is fixed, no computation of cost
measure is necessary and the complexity is dependent
only on a0. In a case where the full growth is employed,
the best basis is searched over all possible bases. With
respect to the given cost measure, the optimal basis can
always be found. If all the intermediate subbands are
preserved, i.e. the implementation is not in place, it can
be shown that the complexity of a full growth f F is

f F ¼ ða0N þ a1ðN þ 1ÞÞL2. (2)

In this case the complexity is independent of the finally
selected tree. The complexity of the greedy approach f G

is

f G ¼ ða0ð1 þ rtÞ þ a1ð2 þ rtÞÞL
2, (3)

where 0prtpN � 1 is the factor that depends on the
finally selected tree. When the greedy search happens to
grow the decomposition tree up to the fully grown tree,
then rt ¼ N � 1 and f G ¼ f F . Depending on the source
image, the complexity generally falls between the two
specified extremes. Thus, greedy approach is in general
computationally less complex on the expense of
potentially suboptimal performance.

In the proposed implementation, each of the N steps
of the dyadic wavelet decomposition is followed by the
greedy growing tree algorithm on the obtained high-pass
subbands. The growth of the tree is controlled with
parameter dpN, that defines the coarsest scale of the
subband that can be produced by the greedy growth.
Each subband that is on the scale finer than d is
decomposed depending on the decision given by the cost
function. The complexity for this type of decomposition
is upper bounded with

f G0
u
¼ f D þ 3 a0

Xd�1

k¼1

2�2kðd � kÞ

 

þ a1

Xd�1

k¼1

2�2kðd � k þ 1Þ

!
L2

¼ f D þ
1

3
a0

1

4d�1
þ 3d � 4

� ��

þ a1
�2

4d�1
þ 3d � 1

� ��
L2

p a0 d þ
4

3

� �
þ a1d

� �
L2. ð4Þ

It can be seen that the complexity increases linearly with
d. The lower bound of the complexity, for the case when
only the immediately lower level of the dyadic decom-
position tree is grown, is given by

f G0
l
¼ f D þ 3ða0 þ 2a1Þ

Xd�1

k¼1

2�2kL2

¼ f D þ
4d�1 � 1

4d�1
ða0 þ 2a1ÞL

2 � 2f D. ð5Þ

Since the algorithm execution time largely depends on
the wavelet transform, this determines the overall WP-
SPIHT execution time to be at least two times longer
than for the baseline SPIHT.

Pseudocodes for WP decomposition/reconstruction
and greedy tree growth algorithm are given in Tables
1–3. Dyadic wavelet decomposition interleaved with
greedy growth decomposition of the high-pass subbands
is defined by function ‘‘Decompose’’ (Table 1), where
the greedy growth itself is performed with the function
‘‘WPanalysis’’ (Table 2). The ‘‘treeinfo’’ vector contains
a description of the chosen basis and is necessary at the
decoder for proper reconstruction. This information
represents a bit-stream overhead, but its influence on
compression results is negligible. Note that when d ¼ 0
this is equivalent to performing only dyadic decomposi-
tion and in this case the WP-SPIHT coder produces
results identical to the baseline SPIHT coder. SOTs are
dynamically built during the decomposition. This is in
the pseudocodes represented by the operations ‘‘define
parent–children relations’’ and ‘‘resolve parental con-
flicts’’, which are explained in Section 3. The image is
reconstructed as shown in Table 3, using function
‘‘Reconstruct’’ for dyadic reconstruction, and, as
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Table 1

Pseudocode for wavelet packets decomposition

function Decomposeðimage;N; dÞ ! fS; costimage; treeinfg

image ! LL0

0 ! costimage

½ � ! treeinf

for k ¼ 1 to N

DWTðLLk�1Þ ! ½½LLk HLk�
T ½LHk HHk�

T � ! LLk�1

if kod

WPanalysisðHLk ; d � k; treeinfÞ ! fHLk ; costHL; treeinfg

WPanalysisðLHk ; d � k; treeinfÞ ! fLHk ; costLH ; treeinfg

WPanalysisðHHk ; d � k; treeinfÞ ! fHHk ; costHH ; treeinfg

else

costðHLkÞ ! costHLk

costðLHkÞ ! costLHk

costðHHkÞ ! costHHk

costimage þ costHLk
þ costLHk

þ costHHk
! costimage

define parent–children relations

resolve parental conflicts

costimage þ costðLLN Þ ! costimage

LL0 ! S �
SN

k¼1ðHLk ;LHk ;HHkÞ;LLN

Table 2

Pseudocode for greedy tree growth algorithm

function WPanalysisðS; depth; treeinfÞ ! fS; costS ; treeinfg

DWTðSÞ ! ½½LL HL�T ½LH HH�T � ! S

cost(S) ! costS

cost(LL) ! costLL
cost(HL) ! costHL
cost(LH) ! costLH
cost(HH) ! costHH
if costLL þ costHL þ costLH þ costHHocostS

if depth41

WPanalysisðLL; depth � 1; treeinfÞ ! fLL; costLL; treeinfg

WPanalysisðHL; depth � 1; treeinfÞ ! fHL; costHL; treeinfg

WPanalysisðLH; depth � 1; treeinfÞ ! fLH; costLH ; treeinfg

WPanalysisðHH; depth � 1; treeinfÞ ! fHH; costHH ; treeinfg

½1 treeinf � ! treeinf

costLL þ costHL þ costLH þ costHH ! costS

½½LL HL�T ½LH HH�T � ! S

else ½0 treeinf � ! treeinf

Fig. 2. Parent–children relations across subbands.

Table 3

Pseudocode for wavelet packets reconstruction

function ReconstructðS;N; d ; treeinfÞ ! image

for k ¼ N to 1

if kod

WPsynthesisðHHk ; d � k; treeinfÞ ! HHk

WPsynthesisðLHk ; d � k; treeinfÞ ! LHk

WPsynthesisðHLk ; d � k; treeinfÞ ! HLk

IDWTðLLk ;HLk ;LHk ;HHkÞ ! LLkþ1

LL0 ! image

function WPsynthesisðS; depth; treeinfÞ ! S

if treeinf1 ¼¼ 1

remove treeinf1 from treeinf

S ! ½½LL HL�T ½LH HH�T �

if depth41

WPsynthesisðHH; depth � 1; treeinfÞ ! fHH; treeinfg

WPsynthesisðLH; depth � 1; treeinfÞ ! fLH; treeinfg

WPsynthesisðHL; depth � 1; treeinfÞ ! fHL; treeinfg

WPsynthesisðLL; depth � 1; treeinfÞ ! fLL; treeinfg

IDWTðLL;HL;LH;HHÞ ! S

else remove treeinf1 from treeinf
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specified by the ‘‘treeinfo’’ parameter, the function
‘‘WPsynthesis’’ performs WP reconstruction.
3. Definition of SOTs in WP-SPIHT

SPIHT algorithm exploits the statistical properties of
pyramid wavelet transformed image, which are energy
compaction, cross-subband similarity and decaying of
coefficient magnitudes across subbands. Fig. 2 indicates
the SOTs and corresponding parent–children relation-
ships across the subbands in the case of the dyadic
decomposition. In the text that follows, a wavelet
transform coefficient is also referred to as a ‘‘pixel’’.
Let cði; jÞ denote the wavelet transform coefficient (pixel)
at (row,column) position in the transformed image. The
set of immediate descendants (children) of a coefficient
is denoted by Oði; jÞ, the set of all descendants Dði; jÞ,
and the set of all descendants, but excluding immediate
children is Lði; jÞ ¼ Dði; jÞnOði; jÞ, Fig. 2. If c(1,1) is pixel
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in the upper left corner of the image, for the dyadic
decomposition the set O is defined as Oði; jÞ ¼ fð2i �

1; 2j � 1Þ; ð2i � 1; 2jÞ; ð2i; 2j � 1Þ; ð2i; 2jÞg (for LHn, HLn

and HHn subbands, n ¼ 2:::N). For LLN the set O can
be defined in several ways with negligible variations in
compression performance. Here the definition as in
EZW is selected, where Oði; jÞ ¼ fði; 2j � 1Þ; ð2i � 1; jÞ;
ð2i � 1; 2j � 1Þg. For the case of the WP decomposition,
the parent–child relations have to be adapted in a way
that the property of cross-level similarities is preserved.
Dyadic decomposition level of a certain subband is
defined, and its value is the same as of the initial dyadic
subband from which it has been obtained by further
decomposition, e.g. all subbands obtained from decom-
posing LH1 are at the same dyadic decomposition level.
Therefore, the same dyadic decomposition level does not
implicate the same scale—just the same position on a
dyadic wavelet tree.

The examples of parent–child assignments are shown
in Fig. 3, where each subband is marked with a dot
whose radius is inversely proportional to its scale. If the
whole subband is treated as node in a SOT, Natural
Parent (NP) can be defined as an SOT node whose child
is on the immediately finer scale. A child of an NP must
have the same relative position as NP, if a relative
position of subband is defined in regard to initial dyadic
subband from which it is obtained by further decom-
position. With regular SOTs, as in SPIHT, each parent
coefficient has four of its children on the same spatial
location and immediately on next lower level of wavelet
decomposition tree. Therefore all parents in dyadic
wavelet decompositions are natural, Fig. 3(a). With WP
Fig. 3. Examples of parent–child assignments: (a) wavelet decomposi-

tion tree, (b) wavelet packet trees and inter-level dependencies, (c)

parent–child assignments after resolving the parental conflicts.
decomposition the parent–child assignments are more
complex since that there can be various scale differences
between subbands on adjacent dyadic decomposition
levels. In contrast to dyadic decomposition, in the
wavelet packet tree one or more of the child nodes can
be at the coarser scale than the parent node. Two types
of parental conflict can arise:
(1)
 Type 1—When a coefficient in a child node can be
associated to multiple parent coefficients in the
parent node.
(2)
 Type 2—When more than four coefficients in a child
node can be children coefficients to a coefficient in
the parent node.
Let R denote the node representing the lowest frequency
subband ðLLN Þ in the top-left corner of a dyadic
decomposed image, Fig. 3(b). It has three children
represented with nodes T1, T2 and T3, which correspond
to the coarsest scale high-frequency subbands HLN ,
LHN and HHN . These are the root nodes of three
compatible SOTs with different orientations—horizon-
tal, vertical and diagonal, respectively. All subbands on
next lower level are here called child subbands, although
when parental conflicts are resolved, a real parent can be
found in some upper level. Four different cases of inter-
level dependencies can be recognized:
(1)
 A subband has within the same relative position
child subbands which are on a coarser scale
(parental conflict, type 1); example is the subtree of
T2 and child subbands C1, C2, C3, C4, Fig. 3(b).
(2)
 A subband has within the same relative position
child subband that is on the same scale; example is
the subtree of T2, Fig. 3(b).
(3)
 A subband has within the same relative position
child subband that is on a immediately finer scale;
example is the subtree of T3 (NP-natural parent–
child relation), Fig. 3(b).
(4)
 Relative position of subband overlaps with the
relative position of a child subband that is on a
scale more than one level finer (parental conflict,
type 2); example is the subtree of T1, Fig. 3(b).
In [11] only wavelet trees with cases (2) and (3) were
considered. In [26] case (1) is resolved by moving up in
the tree all subbands on a lower level that caused the
parental conflict, until the conflict is resolved, i.e. until
case (1) turns to (2) or (3). In case (2) there is only one
child per parent, as the involved subbands are on the
same scale. We adopted the same approach for these
two cases, but we also consider case (4) which we
resolved by assigning the child subband to the first
subband on higher level that is found within same
relative position, using some predefined scanning order.
In that case one node can have more than four children,
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specifically, the number of children becomes 4n, n being
the difference in scales between parent and child node.
The required modification of SPIHT is introduced that
enables support for parents having any number of
children, thus covering cases (2) and (4). Fig. 3(c) shows
examples of parent–child assignments after resolving the
parental conflicts. The conflicts arisen after one step of
dyadic decomposition and subsequent greedy growth of
the high-pass subbands, are resolved before performing
next level of the dyadic decomposition, as shown in
Table 1.
Fig. 5. Lena: comparison of PSNR values for SPIHT and WP-SPIHT.

Fig. 6. Goldhill: comparison of PSNR values for SPIHT and

WP-SPIHT.
4. Experimental results

WP-SPIHT algorithm has been tested on eight 512 �

512 images: ‘‘Goldhill’’, ‘‘Lena’’, ‘‘Barbara’’, ‘‘Finger-
prints’’, ‘‘Zone’’ and three textures from the ‘‘Brodatz’’
album [28]—‘‘D49’’, ‘‘D76’’ and ‘‘D106’’. Biorthogonal
9/7 transform is used for wavelet packets decomposi-
tion. Fig. 4 shows examples of best basis geometry from
the experiments. The software used in experiments is
available at [29].

We present WP-SPIHT and SPIHT coding results
both visually and in the terms of PSNR. For natural
images ‘‘Lena’’, ‘‘Goldhill’’ and ‘‘Barbara’’ PSNR
results for SPIHT are better than for WP-SPIHT,
Figs. 5–7, while WP-SPIHT provides better visual
quality for textured parts of these images. We use the
term ‘texture’ to describe region of the image composed
of repetitive and approximately periodic patterns which
are small in comparison to region’s size. To demonstrate
the performance, Figs. 8–11 compare visual quality of
SPIHT and WP-SPIHT decoded images ‘‘Barbara’’ and
‘‘Goldhill’’.

Representation of finely textured regions is noticeably
better for WP-SPIHT algorithm, Fig. 9. In Fig. 11(b) it
can be seen that texture of the roof has been erased by
Fig. 4. Best basis geometry: (a) Goldhill, (b) Lena, (c) Barbara,

(d) Fingerprints, (e) Zone, (f) D49.

Fig. 7. Barbara: comparison of PSNR values for SPIHT and

WP-SPIHT.
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Fig. 8. (a) Original image Barbara, (b) SPIHT decoded, 0.25 bpp, (c) WP-SPIHT decoded, 0.25 bpp.

Fig. 9. Magnified detail from image Barbara: (a) original, (b) SPIHT decoded, 0.25 bpp, (c) WP-SPIHT decoded, 0.25 bpp.

Fig. 10. (a) Original Goldhill, (b) SPIHT decoded, 0.25 bpp, (c) WP-SPIHT decoded, 0.25 bpp.

Fig. 11. Magnified detail from image Goldhill: (a) original, (b) SPIHT decoded, 0.25 bpp, (c) WP-SPIHT decoded, 0.25 bpp.

N. Sprljan et al. / Real-Time Imaging 11 (2005) 378–388384
SPIHT, while WP-SPIHT has preserved it, Fig. 11(c).
Wavelet packet basis can represent waveforms that are
very well localized in frequency and therefore can be
very well fitted for a particular image since it can match
oscillatory patterns of image textures. For images
that contain a mixture of smooth and textured features
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Fig. 14. Texture D49: comparison of PSNR values for SPIHT and

WP-SPIHT.

N. Sprljan et al. / Real-Time Imaging 11 (2005) 378–388 385
WP-SPIHT yields lower PSNR than SPIHT, but
textured parts of these images have better visual quality
for WP-SPIHT than for SPIHT. Ringing artefacts are
visible for both SPIHT and WP-SPIHT at sharp edges
where the intensity abruptly changes. Wavelet coeffi-
cients of a large magnitude in the high-pass subbands
can be observed on locations corresponding to the edges
in the image. The error caused by quantization of these
coefficients will cause phenomenon of ringing artefacts
that are localized around the affected edges. In the WP
case, quantization of these coefficients can affect large
regions around edges since the support of wavelet filters
operating on high-pass wavelet coefficients is increased.

WP-SPIHT algorithm outperforms SPIHT in terms of
PSNR for ‘‘Fingerprints’’, synthetic image ‘‘Zone’’ and
images of textures, Figs. 12–16. Compression results for
synthetic image ‘‘Zone’’ with oscillatory pattern and
three textures from the ‘‘Brodatz’’ album demonstrate
the property of WP-SPIHT algorithm of reproducing
oscillatory patterns and textures. The basis selected by
the algorithm is usually well adapted to the target image,
Fig. 12. Fingerprints: comparison of PSNR values for SPIHT and

WP-SPIHT.

Fig. 13. Zone: comparison of PSNR values for SPIHT and

WP-SPIHT.

Fig. 15. Texture D76: comparison of PSNR values for SPIHT and

WP-SPIHT.

Fig. 16. Texture D106: comparison of PSNR values for SPIHT and

WP-SPIHT.
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and with the WP-SPIHT coder it is possible to obtain
much crisper reconstructed image than with the SPIHT
coder.

Images ‘‘Fingerprints’’ and ‘‘Zone’’ contain oscilla-
tory patterns in the vertical, horizontal and diagonal
directions. Zone contains concentric circular pattern
with monotonic increase in frequency towards borders
of the image. Improvement of WP-SPIHT algorithm is
less significant for ‘‘Fingerprints’’ (0.1–0.3 dB) than for
‘‘Zone’’ (2.5–4 dB), Figs. 12 and 13. WP-SPIHT coder
persistently outperforms SPIHT for compressing tex-
tures, Figs. 14–16. Figs. 17–19 show the result of a
compression using SPIHT and WP-SPIHT at the same
compression rate (0.25 bpp) for images ‘‘Fingerprints’’,
‘‘Zone’’ and texture ‘‘D49’’, respectively. We notice in
Fig. 17. (a) Original Fingerprints, (b) SPIHT: decoded Fingerprin

Fig. 18. (a) Original Zone, (b) SPIHT: decoded Zone, 0

Fig. 19. (a) Original texture D49, (b) SPIHT: decoded D4
Fig. 18 that WP-SPIHT image has much better visual
quality than SPIHT image in the corners of image Zone
that contain high frequency alternations of black and
white lines, but in the center of this image (low
frequency alternations), WP-SPIHT introduces smear-
ing effect, which is not so noticeable in SPIHT image. In
Fig. 19 we can see that in SPIHT image vertical lines are
lost and in WP-SPIHT are still visible. For other
textures from Brodatz album similar results are
achieved.

Possible application of WP-SPIHT algorithm can be
found in object-based wavelet image coding system
where different image regions can be coded separately
with its own compression ratio. In this approach WP-
SPIHT can be employed for coding of texture regions of
ts, 0.25 bpp, (c) WP-SPIHT: decoded Fingerprints, 0.25 bpp.

.25 bpp, (c) WP-SPIHT: decoded Zone, 0.25 bpp.

9, 0.25 bpp, (c) WP-SPIHT: decoded D49, 0.25 bpp.
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an image and SPIHT for other regions. Moreover, WP-
SPIHT algorithm can be used in applications where
excellent texture coding performance is essential such as
compression of satellite/remote sensing images or
medical images for telemedicine, where use of WP-
SPIHT algorithm can lead to significant results and
improved diagnosis.
5. Conclusion

Efficient set of rules for establishing zerotree struc-
tures when used with WP decomposition is presented.
The proposed solution enables the modification of
popular SPIHT scheme, called WP-SPIHT—a combina-
tion of WP as a decomposition method with SPIHT as
an image compression scheme. The compression perfor-
mance of WP-SPIHT has been compared to SPIHT
both visually and in terms of PSNR. WP-SPIHT
significantly outperforms SPIHT for textures. For
natural images, which consist of both smooth and
textured areas, the chosen cost function used in WP is
not capable of estimating correctly the true cost for a
case when the subband is encoded with SPIHT. For
those images the PSNR performance of WP-SPIHT is
usually slightly worse. As opposed to wavelets, wavelet
packet basis might not necessarily produce coefficients
that help towards success of the zerotree quantization.
Using the entropy as a criterion for the best basis
selection can result into many coarse scale high
frequency subbands. If a coefficient somewhere at the
bottom of the zerotree is found to be significant, the
parent nodes need to be encoded even if some of them
are insignificant. One way to improve those results
would be in designing an advanced cost metric that
would take into account the characteristics of SPIHT
algorithm and provide optimal distortion value for a
given bitrate.
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